easyclimate.core.stat

easyclimate.core.stat#

Basic statistical analysis of weather and climate variables

Functions

calc_corr_spatial(data_input, x[, time_dim, ...])

Calculate Pearson correlation coefficients and corresponding p-values between spatial data and a time series using scipy.stats.pearsonr.

calc_lead_lag_correlation_coefficients(pcs, ...)

Compute lead-lag correlation coefficients for specified pairs of indexes.

calc_leadlag_corr_spatial(data_input, x, ...)

Calculate Pearson correlation coefficients and corresponding p-values between spatial data and a time series with specified lead or lag shifts, using scipy.stats.pearsonr or xarray methods.

calc_levenetestSpatialPattern_spatial(...[, ...])

Perform Levene test for equal variances of two independent sptial samples along with other axis (i.e. 'time') of scores.

calc_multiple_linear_regression_spatial(...)

Apply multiple linear regression to dataset across spatial dimensions.

calc_non_centered_corr(data_input1, data_input2)

Compute the non-centered (uncentered) correlation coefficient between two xarray DataArrays.

calc_pattern_corr(data_input1, data_input2)

Compute the pattern correlation (non-centered) between two xarray DataArrays over their common spatial dimensions.

calc_timeseries_correlations(da[, dim])

Calculate the correlation matrix between multiple DataArray time series.

calc_ttestSpatialPattern_spatial(...[, dim, ...])

Calculate the T-test for the means of two independent sptial samples along with other axis (i.e. 'time') of scores.

calc_windmask_ttestSpatialPattern_spatial(...)

Generate a significance mask for T-tests on the means of two independent spatial zonal (u) and meridional (v) wind samples, aggregated over the specified dimension (default 'time').

remove_sst_trend(ssta[, spatial_dims])

Remove the global mean SST anomaly trend from the SST anomaly field for EOF/PC analysis and so on.