PyspharmΒΆ
IntroductionΒΆ
This module provides a Python interface to the NCAR SPHEREPACK library. It is designed for working with atmospheric general circulation model (GCM) data and supports various spherical harmonic transformations and interpolations.
You can introduce the Pyspharm
package built into easyclimate-backend
in the following way:
from easyclimate_backend.pyspharm import spharm
Official documentationΒΆ
FunctionsΒΆ
1. gaussian_lats_wtsΒΆ
Computes Gaussian latitudes (in degrees) and their corresponding quadrature weights.
from easyclimate_backend.pyspharm import spharm
nlat = 72 # Number of latitude points
lats, wts = spharm.gaussian_lats_wts(nlat)
print("Gaussian latitudes (degrees):", lats)
print("Quadrature weights:", wts)
Note
Gaussian latitudes are ordered from the North Pole to the South Pole.
Weights are used for Gaussian integration and should be multiplied by the longitude interval (e.g.,
2Ο/nlon
).
2. getgeodesicptsΒΆ
Computes the latitudes and longitudes of points on a twenty-sided (icosahedral) geodesic grid.
from easyclimate_backend.pyspharm import spharm
m = 10 # Number of points on each edge of a geodesic triangle
lats, lons = spharm.getgeodesicpts(m)
print("Geodesic point latitudes (degrees):", lats)
print("Geodesic point longitudes (degrees):", lons)
Use Case
Generating unstructured grid points for interpolation.
3. getspecindxΒΆ
Computes indices for zonal wavenumber (m
) and degree (n
) of spherical harmonic coefficients.
from easyclimate_backend.pyspharm import spharm
ntrunc = 42 # Truncation wavenumber (e.g., T42)
indxm, indxn = spharm.getspecindx(ntrunc)
# Example: View the first 10 coefficients' m and n
for i in range(10):
print(f"Index {i}: m={indxm[i]}, n={indxn[i]}")
Purpose
Resolves the physical meaning of each element in the spectral coefficient array.
4. legendreΒΆ
Computes associated Legendre functions at a specified latitude and truncation wavenumber.
from easyclimate_backend.pyspharm import spharm
lat = 45.0 # Latitude (degrees)
ntrunc = 42 # Truncation wavenumber
pnm = spharm.legendre(lat, ntrunc)
print("Shape of Legendre function values:", pnm.shape) # (ntrunc+1)*(ntrunc+2)/2
Note
Results are used for spectral interpolation (e.g., specintrp
) or custom spectral synthesis.
5. regridΒΆ
Regrids data from an input grid to an output grid, with optional spectral truncation or smoothing.
from easyclimate_backend.pyspharm import spharm
import numpy as np
# Initialize input and output grids
sph_in = spharm.Spharmt(144, 72, gridtype='gaussian') # Input Gaussian grid
sph_out = spharm.Spharmt(128, 64, gridtype='regular') # Output regular grid
# Simulate input data (72x144)
data_in = np.random.rand(72, 144)
# Perform regridding (automatically truncates to output grid's ntrunc)
data_out = spharm.regrid(sph_in, sph_out, data_in)
print("Output data shape:", data_out.shape) # (64, 128)
Smoothing Option
Pass a smooth
array to define smoothing factors for each wavenumber.
6. specintrpΒΆ
Performs spectral interpolation at arbitrary points on the sphere.
from easyclimate_backend.pyspharm import spharm
import numpy as np
# Initialize Spharmt instance
sph = spharm.Spharmt(144, 72, gridtype='gaussian')
# Generate simulated spectral coefficients (assume converted via grdtospec)
spec_coeff = sph.grdtospec(np.random.rand(72, 144))
# Compute Legendre functions at target latitude (e.g., 45Β°N)
lat_target = 45.0
pnm = spharm.legendre(lat_target, sph.ntrunc)
# Interpolate at longitude 90Β°E
lon_target = 90.0
value = spharm.specintrp(lon_target, spec_coeff, pnm)
print("Interpolated value at point:", value)
Note
Legendre functions at the target latitude must be precomputed.
7. Spharmt Class MethodsΒΆ
7.1 spectogrdΒΆ
Transforms spectral coefficients to grid data.
spec_coeff = sph.grdtospec(grid_data) # Assume spectral coefficients are available
grid_reconstructed = sph.spectogrd(spec_coeff)
7.2 getuvΒΆ
Computes wind components from vorticity and divergence.
# Assume vort_spec and div_spec are spectral coefficients of vorticity and divergence
u, v = sph.getuv(vort_spec, div_spec)
7.3 getvrtdivspecΒΆ
Computes vorticity and divergence from wind components.
# Assume u_grid and v_grid are grid wind components
vort_spec, div_spec = sph.getvrtdivspec(u_grid, v_grid)
7.4 getgradΒΆ
Computes the gradient of a scalar field.
# Assume scalar_spec is the spectral coefficients of a scalar field (e.g., height field)
ug, vg = sph.getgrad(scalar_spec)
7.5 getpsichiΒΆ
Computes streamfunction and velocity potential from wind components.
psi_spec, chi_spec = sph.getpsichi(u_grid, v_grid)
7.6 specsmoothΒΆ
Applies spectral smoothing.
smoothed_spec = sph.specsmooth(spec_coeff, smooth_factors)
Key NotesΒΆ
Grid Orientation:
Grid data latitudes are ordered from the North Pole to the South Pole by default.
Longitudes start at 0Β°E and increase eastward.
Spectral Coefficient Order:
Spectral coefficients are arranged in a 1D array of size
(ntrunc+1)*(ntrunc+2)/2
, and their wavenumbers can be resolved usinggetspecindx
.
Performance Optimization:
Use
legfunc='stored'
to speed up repeated method calls, but this increases memory usage.
ConclusionΒΆ
With the above functions and examples, the spharm
module can be used for spherical harmonic analysis, synthesis, interpolation, and physical quantity calculations.