PyspharmΒΆ

IntroductionΒΆ

This module provides a Python interface to the NCAR SPHEREPACK library. It is designed for working with atmospheric general circulation model (GCM) data and supports various spherical harmonic transformations and interpolations.

You can introduce the Pyspharm package built into easyclimate-backend in the following way:

from easyclimate_backend.pyspharm import spharm

Official documentationΒΆ

FunctionsΒΆ

1. gaussian_lats_wtsΒΆ

Computes Gaussian latitudes (in degrees) and their corresponding quadrature weights.

from easyclimate_backend.pyspharm import spharm

nlat = 72  # Number of latitude points
lats, wts = spharm.gaussian_lats_wts(nlat)

print("Gaussian latitudes (degrees):", lats)
print("Quadrature weights:", wts)

Note

  • Gaussian latitudes are ordered from the North Pole to the South Pole.

  • Weights are used for Gaussian integration and should be multiplied by the longitude interval (e.g., 2Ο€/nlon).

2. getgeodesicptsΒΆ

Computes the latitudes and longitudes of points on a twenty-sided (icosahedral) geodesic grid.

from easyclimate_backend.pyspharm import spharm

m = 10  # Number of points on each edge of a geodesic triangle
lats, lons = spharm.getgeodesicpts(m)

print("Geodesic point latitudes (degrees):", lats)
print("Geodesic point longitudes (degrees):", lons)

Use Case

Generating unstructured grid points for interpolation.

3. getspecindxΒΆ

Computes indices for zonal wavenumber (m) and degree (n) of spherical harmonic coefficients.

from easyclimate_backend.pyspharm import spharm

ntrunc = 42  # Truncation wavenumber (e.g., T42)
indxm, indxn = spharm.getspecindx(ntrunc)

# Example: View the first 10 coefficients' m and n
for i in range(10):
    print(f"Index {i}: m={indxm[i]}, n={indxn[i]}")

Purpose

Resolves the physical meaning of each element in the spectral coefficient array.

4. legendreΒΆ

Computes associated Legendre functions at a specified latitude and truncation wavenumber.

from easyclimate_backend.pyspharm import spharm

lat = 45.0  # Latitude (degrees)
ntrunc = 42  # Truncation wavenumber
pnm = spharm.legendre(lat, ntrunc)

print("Shape of Legendre function values:", pnm.shape)  # (ntrunc+1)*(ntrunc+2)/2

Note

Results are used for spectral interpolation (e.g., specintrp) or custom spectral synthesis.

5. regridΒΆ

Regrids data from an input grid to an output grid, with optional spectral truncation or smoothing.

from easyclimate_backend.pyspharm import spharm
import numpy as np

# Initialize input and output grids
sph_in = spharm.Spharmt(144, 72, gridtype='gaussian')  # Input Gaussian grid
sph_out = spharm.Spharmt(128, 64, gridtype='regular')   # Output regular grid

# Simulate input data (72x144)
data_in = np.random.rand(72, 144)

# Perform regridding (automatically truncates to output grid's ntrunc)
data_out = spharm.regrid(sph_in, sph_out, data_in)

print("Output data shape:", data_out.shape)  # (64, 128)

Smoothing Option

Pass a smooth array to define smoothing factors for each wavenumber.

6. specintrpΒΆ

Performs spectral interpolation at arbitrary points on the sphere.

from easyclimate_backend.pyspharm import spharm
import numpy as np

# Initialize Spharmt instance
sph = spharm.Spharmt(144, 72, gridtype='gaussian')

# Generate simulated spectral coefficients (assume converted via grdtospec)
spec_coeff = sph.grdtospec(np.random.rand(72, 144))

# Compute Legendre functions at target latitude (e.g., 45Β°N)
lat_target = 45.0
pnm = spharm.legendre(lat_target, sph.ntrunc)

# Interpolate at longitude 90Β°E
lon_target = 90.0
value = spharm.specintrp(lon_target, spec_coeff, pnm)

print("Interpolated value at point:", value)

Note

Legendre functions at the target latitude must be precomputed.

7. Spharmt Class MethodsΒΆ

7.1 spectogrdΒΆ

Transforms spectral coefficients to grid data.

spec_coeff = sph.grdtospec(grid_data)  # Assume spectral coefficients are available
grid_reconstructed = sph.spectogrd(spec_coeff)

7.2 getuvΒΆ

Computes wind components from vorticity and divergence.

# Assume vort_spec and div_spec are spectral coefficients of vorticity and divergence
u, v = sph.getuv(vort_spec, div_spec)

7.3 getvrtdivspecΒΆ

Computes vorticity and divergence from wind components.

# Assume u_grid and v_grid are grid wind components
vort_spec, div_spec = sph.getvrtdivspec(u_grid, v_grid)

7.4 getgradΒΆ

Computes the gradient of a scalar field.

# Assume scalar_spec is the spectral coefficients of a scalar field (e.g., height field)
ug, vg = sph.getgrad(scalar_spec)

7.5 getpsichiΒΆ

Computes streamfunction and velocity potential from wind components.

psi_spec, chi_spec = sph.getpsichi(u_grid, v_grid)

7.6 specsmoothΒΆ

Applies spectral smoothing.

smoothed_spec = sph.specsmooth(spec_coeff, smooth_factors)

Key NotesΒΆ

  1. Grid Orientation:

    • Grid data latitudes are ordered from the North Pole to the South Pole by default.

    • Longitudes start at 0Β°E and increase eastward.

  2. Spectral Coefficient Order:

    • Spectral coefficients are arranged in a 1D array of size (ntrunc+1)*(ntrunc+2)/2, and their wavenumbers can be resolved using getspecindx.

  3. Performance Optimization:

    • Use legfunc='stored' to speed up repeated method calls, but this increases memory usage.

ConclusionΒΆ

With the above functions and examples, the spharm module can be used for spherical harmonic analysis, synthesis, interpolation, and physical quantity calculations.