FFTPACKΒΆ

Overview and BackgroundΒΆ

FFTPACK is a Fortran library designed for performing fast Fourier transforms (FFT) and related transformations. Initially developed by Paul Swarztrauber and Dick Valent at the National Center for Atmospheric Research (NCAR), FFTPACK version 5.1 is widely recognized for its efficiency in scientific computing, particularly in signal processing, numerical analysis, and atmospheric research. Sponsored by the National Science Foundation, this library provides subroutines for transforming real and complex data, including one-dimensional (1D), two-dimensional (2D), and multiple-sequence transforms.

The Python module _fftpack, generated via F2PY, serves as an interface to FFTPACK’s Fortran subroutines, enabling seamless integration into Python environments like NumPy. This documentation assumes the module is imported as import _fftpack and focuses on its practical usage in Python, including initialization, forward, and backward transforms for various data types.

Key Features:

  • Supported Transforms: Complex FFT, Real FFT, Cosine Transform, Sine Transform, Quarter-Wave Cosine, and Quarter-Wave Sine transforms.

  • Dimensions: 1D, 2D, and multiple-sequence transforms.

  • Efficiency: Optimized for sequences whose lengths are products of small primes.

  • Normalization: All transforms are normalized, ensuring reversibility within algorithmic constraints.

Official documentationΒΆ

FFTPACK5 tutorialΒΆ

(Download FFTPACK5 tutorial).

FFTPACK abstractΒΆ

(Download FFTPACK abstract).

FFTPack tutorialΒΆ

(Download FFTPack tutorial).

FFTPACK5 documentationΒΆ

(Download FFTPACK5 documentation).

Mathematical PrinciplesΒΆ

FFTPACK leverages the Fast Fourier Transform (FFT) algorithm, which reduces the computational complexity of the Discrete Fourier Transform (DFT) from \(O(N^2)\) to \(O(N log N)\). The core idea exploits the periodicity and symmetry of trigonometric functions. Below is a brief overview of the mathematical foundation for key transforms:

1. Complex FFTPACKΒΆ

  • Forward Transform: Converts a time-domain sequence to the frequency domain:
    \[X(k) = \sum_{n=0}^{N-1} x(n) e^{-i 2\pi kn / N}\]
  • Backward Transform: Reverts to the time domain:
    \[x(n) = \sum_{k=0}^{N-1} X(k) e^{i 2\pi kn / N}\]
  • Normalization ensures that applying forward followed by backward transforms recovers the original sequence (up to roundoff error).

2. Real FFTΒΆ

  • Optimized for real-valued inputs, exploiting conjugate symmetry to store only half the frequency components.

  • Forward: \(X(k) = \sum_{n=0}^{N-1} x(n) \cos(2\pi kn / N) - i \sin(2\pi kn / N)\)

3. Cosine and Sine TransformsΒΆ

  • Used for even (cosine) and odd (sine) symmetry data, respectively.

  • Cosine: \(X(k) = \sum_{n=0}^{N-1} x(n) \cos(\pi kn / (N-1))\)

  • Sine: \(X(k) = \sum_{n=1}^{N} x(n) \sin(\pi kn / (N+1))\)

4. Quarter-Wave TransformsΒΆ

  • Specialized for odd wave numbers, useful in boundary value problems:
    • Quarter-Cosine: \(X(k) = \sum_{n=0}^{N-1} x(n) \cos((2n+1)k\pi / (2N))\)

    • Quarter-Sine: \(X(k) = \sum_{n=1}^{N} x(n) \sin((2n-1)k\pi / (2N))\)

For detailed derivations, refer to Swarztrauber’s works: Vectorizing the Fast Fourier Transforms (1982) and Fast Fourier Transforms Algorithms for Vector Computers (1984).

Usage in PythonΒΆ

The _fftpack module requires NumPy for array operations. All subroutines follow a triplet structure: initialization (suffix i), forward transform (suffix f), and backward transform (suffix b). Below are detailed usage instructions and examples.

from easyclimate_backend import _fftpack
import numpy as np

1. Complex TransformsΒΆ

1.1 One-Dimensional Complex FFTΒΆ

  • Initialization: cfft1i - Prepares the work array wsave. - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.cfft1i(n, wsave)
  • Backward Transform: cfft1b (Frequency to Time) - Example:

c = np.random.rand(n).astype(np.complex64)
lenc = n
lenwrk = 2 * n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.cfft1b(n, 1, c, lenc, wsave, lensav, work, lenwrk)
  • Forward Transform: cfft1f (Time to Frequency) - Example:

c = np.random.rand(n).astype(np.complex64)
ier = _fftpack.cfft1f(n, 1, c, lenc, wsave, lensav, work, lenwrk)

1.2 Two-Dimensional Complex FFTΒΆ

  • Initialization: cfft2i - Example:

l, m = 16, 16
lensav = 2 * (l + m) + int(np.log(l) / np.log(2)) + int(np.log(m) / np.log(2)) + 8
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.cfft2i(l, m, wsave)
  • Backward Transform: cfft2b - Example:

c = np.random.rand(l, m).astype(np.complex64)
ldim = l
lenwrk = 2 * l * m
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.cfft2b(ldim, l, m, c, wsave, lensav, work, lenwrk)
  • Forward Transform: cfft2f - Example:

c = np.random.rand(l, m).astype(np.complex64)
ier = _fftpack.cfft2f(ldim, l, m, c, wsave, lensav, work, lenwrk)

1.3 Multiple Complex FFTΒΆ

  • Initialization: cfftmi - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.cfftmi(n, wsave)
  • Backward Transform: cfftmb - Example:

lot = 10
c = np.random.rand(lot * n).astype(np.complex64)
lenc = lot * n
lenwrk = 2 * lot * n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.cfftmb(lot, 1, n, 1, c, lenc, wsave, lensav, work, lenwrk)
  • Forward Transform: cfftmf - Example:

c = np.random.rand(lot * n).astype(np.complex64)
ier = _fftpack.cfftmf(lot, 1, n, 1, c, lenc, wsave, lensav, work, lenwrk)

2. Real TransformsΒΆ

2.1 One-Dimensional Real FFTΒΆ

  • Initialization: rfft1i - Example:

n = 16
lensav = n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.rfft1i(n, wsave)
  • Backward Transform: rfft1b - Example:

r = np.random.rand(n).astype(np.float32)
lenr = n
lenwrk = n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.rfft1b(n, 1, r, lenr, wsave, lensav, work, lenwrk)
  • Forward Transform: rfft1f - Example:

r = np.random.rand(n).astype(np.float32)
ier = _fftpack.rfft1f(n, 1, r, lenr, wsave, lensav, work, lenwrk)

2.2 Two-Dimensional Real FFTΒΆ

  • Initialization: rfft2i - Example:

l, m = 16, 16
lensav = l + 3 * m + int(np.log(l) / np.log(2)) + 2 * int(np.log(m) / np.log(2)) + 12
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.rfft2i(l, m, wsave)
  • Backward Transform: rfft2b - Example:

r = np.random.rand(l, m).astype(np.float32)
ldim = l
lenwrk = (l + 1) * m
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.rfft2b(ldim, l, m, r, wsave, lensav, work, lenwrk)
  • Forward Transform: rfft2f - Example:

r = np.random.rand(l, m).astype(np.float32)
ier = _fftpack.rfft2f(ldim, l, m, r, wsave, lensav, work, lenwrk)

2.3 Multiple Real FFTΒΆ

  • Initialization: rfftmi - Example:

n = 16
lensav = n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.rfftmi(n, wsave)
  • Backward Transform: rfftmb - Example:

lot = 10
r = np.random.rand(lot * n).astype(np.float32)
lenr = lot * n
lenwrk = lot * n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.rfftmb(lot, 1, n, 1, r, lenr, wsave, lensav, work, lenwrk)
  • Forward Transform: rfftmf - Example:

r = np.random.rand(lot * n).astype(np.float32)
ier = _fftpack.rfftmf(lot, 1, n, 1, r, lenr, wsave, lensav, work, lenwrk)

3. Cosine TransformsΒΆ

3.1 One-Dimensional Cosine TransformΒΆ

  • Initialization: cost1i - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.cost1i(n, wsave)
  • Backward Transform: cost1b - Example:

x = np.random.rand(1, n).astype(np.float32)
lenx = n
lenwrk = n - 1
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.cost1b(n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: cost1f - Example:

x = np.random.rand(1, n).astype(np.float32)
ier = _fftpack.cost1f(n, 1, x, lenx, wsave, lensav, work, lenwrk)

3.2 Multiple Cosine TransformΒΆ

  • Initialization: costmi - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.costmi(n, wsave)
  • Backward Transform: costmb - Example:

lot = 10
x = np.random.rand(1, lot * n).astype(np.float32)
lenx = lot * n
lenwrk = lot * (n + 1)
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.costmb(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: costmf - Example:

x = np.random.rand(1, lot * n).astype(np.float32)
ier = _fftpack.costmf(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)

4. Sine TransformsΒΆ

4.1 One-Dimensional Sine TransformΒΆ

  • Initialization: sint1i - Example:

n = 16
lensav = n // 2 + n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.sint1i(n, wsave)
  • Backward Transform: sint1b - Example:

x = np.random.rand(1, n).astype(np.float32)
lenx = n
lenwrk = 2 * n + 2
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.sint1b(n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: sint1f - Example:

x = np.random.rand(1, n).astype(np.float32)
ier = _fftpack.sint1f(n, 1, x, lenx, wsave, lensav, work, lenwrk)

4.2 Multiple Sine TransformΒΆ

  • Initialization: sintmi - Example:

n = 16
lensav = n // 2 + n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.sintmi(n, wsave)
  • Backward Transform: sintmb - Example:

lot = 10
x = np.random.rand(1, lot * n).astype(np.float32)
lenx = lot * n
lenwrk = lot * (2 * n + 4)
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.sintmb(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: sintmf - Example:

x = np.random.rand(1, lot * n).astype(np.float32)
ier = _fftpack.sintmf(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)

5. Quarter-Wave Cosine TransformsΒΆ

5.1 One-Dimensional Quarter-Cosine TransformΒΆ

  • Initialization: cosq1i - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.cosq1i(n, wsave)
  • Backward Transform: cosq1b - Example:

x = np.random.rand(1, n).astype(np.float32)
lenx = n
lenwrk = n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.cosq1b(n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: cosq1f - Example:

x = np.random.rand(1, n).astype(np.float32)
ier = _fftpack.cosq1f(n, 1, x, lenx, wsave, lensav, work, lenwrk)

5.2 Multiple Quarter-Cosine TransformΒΆ

  • Initialization: cosqmi - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.cosqmi(n, wsave)
  • Backward Transform: cosqmb - Example:

lot = 10
x = np.random.rand(1, lot * n).astype(np.float32)
lenx = lot * n
lenwrk = lot * n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.cosqmb(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: cosqmf - Example:

x = np.random.rand(1, lot * n).astype(np.float32)
ier = _fftpack.cosqmf(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)

6. Quarter-Wave Sine TransformsΒΆ

6.1 One-Dimensional Quarter-Sine TransformΒΆ

  • Initialization: sinq1i - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.sinq1i(n, wsave)
  • Backward Transform: sinq1b - Example:

x = np.random.rand(1, n).astype(np.float32)
lenx = n
lenwrk = n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.sinq1b(n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: sinq1f - Example:

x = np.random.rand(1, n).astype(np.float32)
ier = _fftpack.sinq1f(n, 1, x, lenx, wsave, lensav, work, lenwrk)

6.2 Multiple Quarter-Sine TransformΒΆ

  • Initialization: sinqmi - Example:

n = 16
lensav = 2 * n + int(np.log(n) / np.log(2)) + 4
wsave = np.zeros(lensav, dtype=np.float32)
ier = _fftpack.sinqmi(n, wsave)
  • Backward Transform: sinqmb - Example:

lot = 10
x = np.random.rand(1, lot * n).astype(np.float32)
lenx = lot * n
lenwrk = lot * n
work = np.zeros(lenwrk, dtype=np.float32)
ier = _fftpack.sinqmb(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)
  • Forward Transform: sinqmf - Example:

x = np.random.rand(1, lot * n).astype(np.float32)
ier = _fftpack.sinqmf(lot, 1, n, 1, x, lenx, wsave, lensav, work, lenwrk)

Notes and Best PracticesΒΆ

  • Work Array (`wsave`): Must be initialized using the corresponding i subroutine before any transform. Reusable for the same sequence length.

  • Data Types: Use np.float32 for real arrays and np.complex64 for complex arrays to match FFTPACK’s single-precision requirements.

  • Error Handling: Check the ier return value; 0 indicates success, while non-zero values signal issues like insufficient array sizes.

  • Performance: Transforms are most efficient when sequence lengths are products of small primes (e.g., 2, 3, 5).

  • Array Dimensions: Ensure input arrays match the expected sizes (lenc, lenr, lensav, lenwrk) as specified in the examples.