.. _module_pyspharm: Pyspharm ============ Introduction ------------ This module provides a Python interface to the NCAR SPHEREPACK library. It is designed for working with atmospheric general circulation model (GCM) data and supports various spherical harmonic transformations and interpolations. .. tip:: https://github.com/jswhit/pyspharm You can introduce the ``Pyspharm`` package built into ``easyclimate-backend`` in the following way: .. code-block:: python from easyclimate_backend.pyspharm import spharm Official documentation ------------------------- .. raw:: html Functions --------- 1. gaussian_lats_wts ~~~~~~~~~~~~~~~~~~~~ Computes Gaussian latitudes (in degrees) and their corresponding quadrature weights. .. code-block:: python from easyclimate_backend.pyspharm import spharm nlat = 72 # Number of latitude points lats, wts = spharm.gaussian_lats_wts(nlat) print("Gaussian latitudes (degrees):", lats) print("Quadrature weights:", wts) .. note:: - Gaussian latitudes are ordered from the North Pole to the South Pole. - Weights are used for Gaussian integration and should be multiplied by the longitude interval (e.g., ``2π/nlon``). 2. getgeodesicpts ~~~~~~~~~~~~~~~~~ Computes the latitudes and longitudes of points on a twenty-sided (icosahedral) geodesic grid. .. code-block:: python from easyclimate_backend.pyspharm import spharm m = 10 # Number of points on each edge of a geodesic triangle lats, lons = spharm.getgeodesicpts(m) print("Geodesic point latitudes (degrees):", lats) print("Geodesic point longitudes (degrees):", lons) .. admonition:: Use Case :class: tip Generating unstructured grid points for interpolation. 3. getspecindx ~~~~~~~~~~~~~~ Computes indices for zonal wavenumber (``m``) and degree (``n``) of spherical harmonic coefficients. .. code-block:: python from easyclimate_backend.pyspharm import spharm ntrunc = 42 # Truncation wavenumber (e.g., T42) indxm, indxn = spharm.getspecindx(ntrunc) # Example: View the first 10 coefficients' m and n for i in range(10): print(f"Index {i}: m={indxm[i]}, n={indxn[i]}") .. admonition:: Purpose :class: tip Resolves the physical meaning of each element in the spectral coefficient array. 4. legendre ~~~~~~~~~~~ Computes associated Legendre functions at a specified latitude and truncation wavenumber. .. code-block:: python from easyclimate_backend.pyspharm import spharm lat = 45.0 # Latitude (degrees) ntrunc = 42 # Truncation wavenumber pnm = spharm.legendre(lat, ntrunc) print("Shape of Legendre function values:", pnm.shape) # (ntrunc+1)*(ntrunc+2)/2 .. note:: Results are used for spectral interpolation (e.g., ``specintrp``) or custom spectral synthesis. 5. regrid ~~~~~~~~~ Regrids data from an input grid to an output grid, with optional spectral truncation or smoothing. .. code-block:: python from easyclimate_backend.pyspharm import spharm import numpy as np # Initialize input and output grids sph_in = spharm.Spharmt(144, 72, gridtype='gaussian') # Input Gaussian grid sph_out = spharm.Spharmt(128, 64, gridtype='regular') # Output regular grid # Simulate input data (72x144) data_in = np.random.rand(72, 144) # Perform regridding (automatically truncates to output grid's ntrunc) data_out = spharm.regrid(sph_in, sph_out, data_in) print("Output data shape:", data_out.shape) # (64, 128) .. admonition:: Smoothing Option :class: tip Pass a ``smooth`` array to define smoothing factors for each wavenumber. 6. specintrp ~~~~~~~~~~~~ Performs spectral interpolation at arbitrary points on the sphere. .. code-block:: python from easyclimate_backend.pyspharm import spharm import numpy as np # Initialize Spharmt instance sph = spharm.Spharmt(144, 72, gridtype='gaussian') # Generate simulated spectral coefficients (assume converted via grdtospec) spec_coeff = sph.grdtospec(np.random.rand(72, 144)) # Compute Legendre functions at target latitude (e.g., 45°N) lat_target = 45.0 pnm = spharm.legendre(lat_target, sph.ntrunc) # Interpolate at longitude 90°E lon_target = 90.0 value = spharm.specintrp(lon_target, spec_coeff, pnm) print("Interpolated value at point:", value) .. note:: Legendre functions at the target latitude must be precomputed. 7. Spharmt Class Methods ------------------------ 7.1 spectogrd ~~~~~~~~~~~~~ Transforms spectral coefficients to grid data. .. code-block:: python spec_coeff = sph.grdtospec(grid_data) # Assume spectral coefficients are available grid_reconstructed = sph.spectogrd(spec_coeff) 7.2 getuv ~~~~~~~~~ Computes wind components from vorticity and divergence. .. code-block:: python # Assume vort_spec and div_spec are spectral coefficients of vorticity and divergence u, v = sph.getuv(vort_spec, div_spec) 7.3 getvrtdivspec ~~~~~~~~~~~~~~~~~ Computes vorticity and divergence from wind components. .. code-block:: python # Assume u_grid and v_grid are grid wind components vort_spec, div_spec = sph.getvrtdivspec(u_grid, v_grid) 7.4 getgrad ~~~~~~~~~~~ Computes the gradient of a scalar field. .. code-block:: python # Assume scalar_spec is the spectral coefficients of a scalar field (e.g., height field) ug, vg = sph.getgrad(scalar_spec) 7.5 getpsichi ~~~~~~~~~~~~~ Computes streamfunction and velocity potential from wind components. .. code-block:: python psi_spec, chi_spec = sph.getpsichi(u_grid, v_grid) 7.6 specsmooth ~~~~~~~~~~~~~~ Applies spectral smoothing. .. code-block:: python smoothed_spec = sph.specsmooth(spec_coeff, smooth_factors) Key Notes --------- 1. **Grid Orientation**: - Grid data latitudes are ordered from the North Pole to the South Pole by default. - Longitudes start at 0°E and increase eastward. 2. **Spectral Coefficient Order**: - Spectral coefficients are arranged in a 1D array of size ``(ntrunc+1)*(ntrunc+2)/2``, and their wavenumbers can be resolved using ``getspecindx``. 3. **Performance Optimization**: - Use ``legfunc='stored'`` to speed up repeated method calls, but this increases memory usage. Conclusion ---------- With the above functions and examples, the ``spharm`` module can be used for spherical harmonic analysis, synthesis, interpolation, and physical quantity calculations.